首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   25篇
  国内免费   7篇
测绘学   4篇
大气科学   30篇
地球物理   98篇
地质学   125篇
海洋学   26篇
天文学   41篇
综合类   1篇
自然地理   21篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   25篇
  2017年   12篇
  2016年   24篇
  2015年   12篇
  2014年   23篇
  2013年   20篇
  2012年   14篇
  2011年   18篇
  2010年   17篇
  2009年   28篇
  2008年   14篇
  2007年   19篇
  2006年   7篇
  2005年   20篇
  2004年   16篇
  2003年   12篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1985年   3篇
  1981年   1篇
  1977年   1篇
  1970年   2篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
101.
Radiative forcing has been widely used as a metric of climate change, i.e. as a measure by which various contributors to a net surface temperature change can be quantitatively compared. The extent to which this concept is valid for spatially inhomogeneous perturbations to the climate system is tested. A series of climate model simulations involving ozone changes of different spatial structure reveals that the climate sensitivity parameter is highly variable: for an ozone increase in the northern hemisphere lower stratosphere, it is more than twice as large as for a homogeneous CO2 perturbation. A global ozone perturbation in the upper troposphere, however, causes a significantly smaller surface temperature response than CO2. The variability of the climate sensitivity parameter is shown to be mostly due to the varying strength of the stratospheric water vapour feedback. The variability of the sea-ice albedo feedback modifies climate sensitivity of perturbations with the same vertical structure but a different horizontal structure. This feedback is also the origin of the comparatively larger climate sensitivity to perturbations restricted to the northern hemisphere extratropics. As cloud feedback does not operate independently from the other feedbacks, quantifying its effect is rather difficult. However, its effect on the variability of for horizontally and vertically inhomogeneous perturbations within one model framework seems to be comparatively small.This revised version was published online March 2005 with corrections to table 5.  相似文献   
102.
103.
In this paper, we present an operational model to estimate the actual evapotranspiration (ET) of crops cultivated on hilly terrains. This new model has the following three characteristics: (1) ET modelling is based on a Penman?CMonteith (PM) type equation (Monteith 1965) where canopy resistance is simulated by following an approach already illustrated by Katerji and Perrier (Agronomie 3(6):513?C521, 1983); (2) the estimation of ET, by means of the PM equation, is made by using meteorological variables simulated on sloped sites as input; (3) these variables are simulated by using simple relationships linking the variables measured at a reference site on plane to the topographic characteristics of the site (slope, orientation, altitude as difference between reference, and sloped sites). This approach presents two advantages if compared with previously proposed models: Not only computation steps are greatly simplified but also error sources due to the simulation of climatic variables in sloped sites and the ET estimation are well distinguished. This model was validated at hourly and daily scales at four sites cultivated with wheat and oats offering a wide range of slope and orientation values: a reference site on plane, site 1 (9° sloping, NW orientation, 7 m from the reference site in plane), site 2 (6°, SE, 12 m) and site 3 (1°, SE, 18 m). At hourly scale, the new model performed well at all sites studied. The observed slope of the linear relationships between estimated and measured ET values ranged between 0.93 and 1.03, with coefficients of determination, r 2, between 0.80 and 0.98. At daily scale, the slopes of the linear relationships between measured and estimated ET for the sites on plane and the sloped sites were practically the same (0.98?±?0.01); however, the coefficient of determination r 2 observed in the site on plane was clearly greater (0.98) than that observed in the sloped sites (0.83). The presented analysis does not show any significant systematic effect of topography (slope and orientation of the plots) on the good performance of the proposed model for the ET estimation. Furthermore, we observed that coefficients of determination tend to decrease with the increase in the slope of the site, which translates into increased inaccuracy of the climatic variables simulation, in particular the net radiation, as the slope of the site increases. The proposed model allows to verify the different steps for calculating the fluxes, to identify the eventual sources of error and to make the needed corrections. For this reasons, the proposed model seems to be particularly ??operational??, i.e. a useful tool for estimating fluxes on hilly terrains.  相似文献   
104.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   
105.
Landslides interacting with large infrastructures represent a major problem for the economy, society as a whole, and the safety of workers. Continuous monitoring for 23 months using an integrated platform with a ground-based SAR interferometer (GB-InSAR), a weather station, and an automatic camera gave us the opportunity to analyze the response of an unstable slope to the different phases of work. The deformational behavior of both the natural slope and the man-made structures was recorded and interpreted in relation to the working stages and the rainfall conditions during the whole monitoring period. A typical pattern of displacement was identified for shallow landslides, debris produced by the excavation and gabions, metallic walls, and anchored bulkheads. Furthermore, insights into the dynamics and behavior of the slope and the man-made structures that interact with the landslide were obtained. Extreme rainfall is the main trigger of shallow landslides and gabion deformations, while anchored bulkheads are less influenced by rainfalls. Movement of debris that is produced by excavations and temporary metallic barrier deformation are closely related to each other. The herein proposed monitoring platform is very efficient in monitoring unstable slopes that are affected by human activities. Moreover, the recorded patterns of displacement in the slope and the man-made structures can be used as reference data for similar studies and engineering designs.  相似文献   
106.
Based on new multibeam bathymetric data, seismic-reflection profiles and side-scan sonar images, a great number of submarine failures of various types and sizes was identified along the northern margin of the Ligurian Basin and characterized with 3 distinct end-members concerning their location on the margin, sedimentary processes and possible triggering mechanisms. They include superficial landslides mainly located in the vicinity of the main mountain-supplied rivers and on the inner walls of canyons (typically smaller that 108 m3 in volume: Type 1), deep scars 100?C500 m high along the base of the continental slope (Type 2), and large-scale scars and Mass Transport Deposits (MTDs) affecting the upper part of the slope (Type 3 failures). The MTDs are located in different environmental contexts of the margin, including the deep Var Sedimentary Ridge (VSR) and the upper part of the continental slope in the Gulf of Genova (Finale Slide and Portofino Slide), with volumes of missing sediment reaching up to 1.5 × 109 m3. High sedimentation rates related to hyperpycnal flows, faults and earthquake activity, together with sea-level fluctuations are the main factors invoked to explain the distribution and sizes of these different failure types.  相似文献   
107.
The satellite total solar irradiance (TSI) database provides a valuable record for investigating models of solar variation used to interpret climate changes. The 35-year ACRIM total solar irradiance (TSI) satellite composite time series has been revised using algorithm updates based on 13 years of accumulated mission experience and corrections to ACRIMSAT/ACRIM3 results for scattering and diffraction derived from recent testing at the Laboratory for Atmospheric and Space Physics/Total solar irradiance Radiometer Facility (LASP/TRF). The net correction lowers the ACRIM3 scale by ~3000 ppm, in closer agreement with the scale of SORCE/TIM results (average total solar irradiance ≈1361.5 W/m2). Differences between the ACRIM and PMOD TSI composites are investigated, particularly the decadal trending during solar cycles 21–22 and the Nimbus7/ERB and ERBS/ERBE results available to bridge the ACRIM Gap (1989–1992), are tested against a set of solar proxy models. Our findings confirm the following ACRIM TSI composite features: (1) The validity of the TSI peak in the originally published ERB results in early 1979 during solar cycle 21; (2) The correctness of originally published ACRIM1 results during the SMM spin mode (1981–1984); (3) The upward trend of originally published ERB results during the ACRIM Gap; (4) The occurrence of a significant upward TSI trend between the minima of solar cycles 21 and 22 and (5) a decreasing trend during solar cycles 22–23. The same analytical approach does not support some important features of the PMOD TSI composite: (1) The downward corrections applied to the originally published ERB and ACRIM1 results during solar cycle 21; (2) The step function sensitivity change in ERB results at the end-of-September 1989; (3) The downward trend of ERBE results during the ACRIM Gap and (4) the use of ERBE results to bridge the ACRIM Gap. Our analysis provides a first order validation of the ACRIM TSI composite approach and its 0.037 %/decade upward trend during solar cycles 21–22. The implications of increasing TSI during the global warming of the last two decades of the 20th century are that solar forcing of climate change may be a significantly larger factor than represented in the CMIP5 general circulation climate models.  相似文献   
108.
109.
The drilling comminution is theoretically and experimentally analysed by a fractal approach. An extension of the Third Comminution Theory is developed to evaluate the energy dissipation in the process: it occurs in a fractal domain intermediate between a surface and a volume. The theoretical assumption of a material ‘quantum’ is experimentally observed. The experimental fragment analysis evidences the characteristic size of separation between primary cutting and secondary milling. A global power balance for the drilling process is also presented and permits the prediction of drilling velocity. It shows also how the dissipation energy density (drilling strength) is not a constant parameter, but decreases considerably with the size scale. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号